



Journal of Chromatography A, 752 (1996) 197-207

# Application of correlation analysis for identification of polychlorinated biphenyls

Alena Kubátová<sup>a,\*</sup>, Miroslav Matucha<sup>b</sup>, Jiří G.K. Ševčík<sup>c</sup>

<sup>a</sup>Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeńská 1083, 142 20 Prague 4, Czech Republic <sup>b</sup>Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeńská 1083, 142 20 Prague 4, Czech Republic <sup>c</sup>Charles University, Department of Analytical Chemistry, Albertov 2030, 128 40 Prague 2, Czech Republic

Received 4 March 1996; revised 20 May 1996; accepted 28 May 1996

#### **Abstract**

The analytical process was optimized for the determination of individual PCBs in a commercial mixture, Delor 104, and in soil samples contaminated by PCBs. The optimal analytical conditions for the GC-MS system with a DB-5 capillary column involved a temperature program evaluated in terms of information content I(S) and information flow I(S)/t and an identification procedure based on the correlation analysis of the measured and published relative retention  $r_{12}$  data.

Keywords: Correlation analysis; Environmental analysis; Polychlorinated biphenyls

# 1. Introduction

The composition of PCB-containing samples in the environment continuously changes due to natural degradation processes [1]. The knowledge of the composition of PCBs contained in samples is mandatory for studying their toxic effects, biodegradation processes and for environmental monitoring. There are 209 PCB congeners and they are usually analyzed by gas chromatography with electron-capture (ECD) and mass spectrometric detection [2,3].

The main practical problem for PCB analysis is linked with the lack of a complete set of individual standards. Commercial mixtures of PCBs are usually employed as standards for qualitative and quantitative analysis. Since the PCB composition of environmental samples differs from that in the stan-

Coelution of some 209 PCB congeners on a single capillary column can also be a source of problems [4–8] (only multi-dimensional chromatography permits complete separations of PCBs [3,9]).

The aim of our work was to obtain a maximum amount of information on the PCB composition in environmental samples by applying correlation analysis between commercial PCB standard mixtures and the retention data cited in the literature.

## 2. Experimental

#### 2.1. Chemicals

PCBs commercial mixtures Delor 103, 104, 106 (corresponding, in the degree of chlorination, to Aroclor 1242, 1248, 1260, respectively) were ob-

dards available, analyses related to individual congeners are required.

<sup>\*</sup>Corresponding author.

tained from Chemko Strážské (Slovak Republic) (a concentration of 1  $\mu$ g  $\mu$ l<sup>-1</sup>); octachloronaphthalene (OCN) came from the Labor Dr. Ehrenstorfer (Augsburg, Germany) (a concentration of 10 ng  $\mu$ l<sup>-1</sup>) and soil samples contaminated by PCBs (without information on the origin of contamination) came from the Macadam Plant (Milevsko, Czech Republic) (a declared concentration of 45  $\mu$ g Delor 103 per g of sample). The solvents used were n-heptane, acetone and hexane, analytical grade, from Lachema (Brno, Czech Republic).

# 2.2. Preparation of soil samples

The white rot fungi (Phanerochaete chrysosporium, Pleurotus ostreatus, Trametes versicolor and Coriolopsis polyzona), grown 3 weeks on a sterilized straw (125 g), were applied to 500 g of the soil sample for a biodegradation test. The samples placed in aluminium foil-covered vessels were incubated at 27°C and 85% humidity and were sprayed with water once a week.

After 10 months, homogenized soil samples (5 g) were extracted in a Soxhlet apparatus with a hexane–acetone (3:1) mixture for 4 h, filtered through a cotton wool and washed with acetone. The organic solvent portion was back-extracted with concentrated sulfuric acid (to decoloration) and then with distilled water (to neutral pH), and filtered through a layer of anhydrous sodium sulfate to remove water residues. Finally, the organic portion was evaporated on a rotary evaporator to preconcentrate PCBs and the residue was dissolved in 200  $\mu$ l n-heptane. The recovery of the extraction was approximately 90%.

#### 2.3. GC-MS

The analyses of PCBs were performed on a high-resolution gas chromatograph, Model Varian 3400 (Zug, Switzerland) with a Finnigan Mat 800 ion-trap detector (San Jose, CA, USA). A DB-5 capillary column (J&W Scientific, Folsom, CA, USA), 29 m $\times$ 0.25 mm I.D., with a film thickness of 0.25  $\mu$ m, was used. The capillary column was tested with tetradecane at 125°C, obtaining a solute capacity factor of k'=7.025 and a number of theoretical plates of 3900 per meter. Helium was employed as the

Table 1
Temperature conditions of GC-MS analysis of PCBs (suitable conditions to obtain linear equation are in bold letters)

80°C/0.5 min/25°C min<sup>-1</sup>/100°C/1°C min<sup>-1</sup>/290°C
80°C/0.5 min/25°C min<sup>-1</sup>/100°C/2°C min<sup>-1</sup>/290°C
80°C/0.5 min/25°C min<sup>-1</sup>/100°C/2.5°C min<sup>-1</sup>/290°C
80°C/0.5 min/25°C min<sup>-1</sup>/100°C/3°C min<sup>-1</sup>/290°C
80°C/0.5 min/25°C min<sup>-1</sup>/125°C/1°C min<sup>-1</sup>/290°C
80°C/0.5 min/25°C min<sup>-1</sup>/125°C/2°C min<sup>-1</sup>/290°C
80°C/0.5 min/25°C min<sup>-1</sup>/125°C/3°C min<sup>-1</sup>/290°C
80°C/0.5 min/25°C min<sup>-1</sup>/140°C/3°C min<sup>-1</sup>/290°C
80°C/0.5 min/25°C min<sup>-1</sup>/150°C/1°C min<sup>-1</sup>/290°C
80°C/0.5 min/25°C min<sup>-1</sup>/150°C/2°C min<sup>-1</sup>/290°C
80°C/0.5 min/25°C min<sup>-1</sup>/150°C/3°C min<sup>-1</sup>/290°C
80°C/0.5 min/25°C min<sup>-1</sup>/180°C/1°C min<sup>-1</sup>/290°C
80°C/0.5 min/25°C min<sup>-1</sup>/180°C/1°C min<sup>-1</sup>/290°C

carrier gas with a linear velocity of  $10 \text{ cm s}^{-1}$ , as measured at  $80^{\circ}\text{C}$ . All the measurements were carried out in a full-scan mode, with a mass range from 150 to 450 m/z. The injected sample volume was  $1 \mu \text{I}$  in the splitless mode; the temperature program initiated at  $80^{\circ}\text{C}$  for 0.5 min, with a fast gradient of  $25^{\circ}\text{C}$  min<sup>-1</sup> to the start temperature  $T_s$  equal to 100, 125,  $140 \text{ or } 150^{\circ}\text{C}$ , followed by a gradient  $\Delta T$  of 1 to  $4^{\circ}\text{C}$  min<sup>-1</sup>, to the final temperature of  $290^{\circ}\text{C}$ . Under these conditions, all the PCBs eluted during the temperature gradient (for the temperature programs see Table 1). The detector and injector temperature was  $250^{\circ}\text{C}$  in all the analyses.

#### 3. Results

# 3.1. Relationship between the literature and measured data

A correlation analysis of relative retention times  $r_{12}$  of PCB congeners was carried out for the data sets published by Mullin et al. [10] and Frame [11] and our experimental data for Delor 103 and Delor 106. The basic experimental conditions for the cited measurements and our measurements were similar. The composition of PCB commercial mixtures (Delor 103, 106) has already been published [12], and was later independently verified [13].

First, a correlation between Mullin's  $(r_{12}M)$  and Frame's  $(r_{12}F)$  relative retention data was carried out, finding a polynomial regression of the third

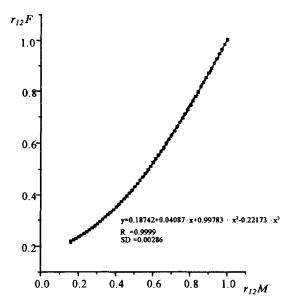



Fig. 1. Regression between the literature data  $r_{12}M$  (Mullin [10]) and  $r_{12}F$  (Frame [11]).

order to be the best fit (Fig. 1). Eq. (1) holds for the regression of the third order.

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3, (1)$$

where y are the data obtained by Frame or the measured data, and x are Mullin's data.

Therefore, the polynomial regression of the third order was also applied to the analyses of our experimental  $r_{12}$  data on the Delor mixtures and Mullin's data were chosen as more suitable for the regression. These data, obtained on the basis of all individual PCB congener analyses, are supposed to be the most complete.

It was found that the values of the regression coefficients  $a_x$  depend on the optimized temperature  $T_s$  and the gradient  $\Delta T$  (cf. Fig. 2, Fig. 3, Fig. 4, and Fig. 5) and for regression coefficients  $a_2 \rightarrow 0$  and  $a_3 \rightarrow 0$ , the third order equation could be reduced to a linear equation,

$$y = a_0' + a_1' x (2)$$

A linear equation was sought to simplify the analytical method. While for a polynomial regression the retention data have to be related to the same internal standard (OCN), for linear regression  $t_r$ , they can be

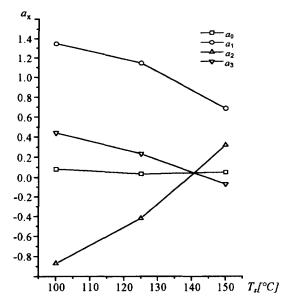



Fig. 2. Dependence of regression coefficients  $a_x$  (where x corresponds to the exponent of the independent variable  $r_{12}$ M) on the temperature  $T_x$  for the temperature program with  $\Delta T = 3^{\circ}$ C min<sup>-1</sup>  $80^{\circ}$ C/0.5 min<sup>-2</sup>/ $25^{\circ}$ C min<sup>-1</sup>/ $T_x$ /3°C min<sup>-1</sup>/ $290^{\circ}$ C.

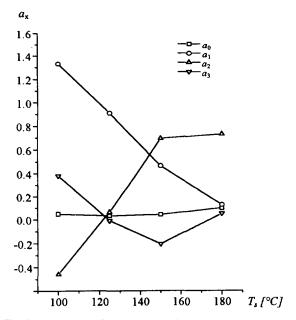



Fig. 3. Dependence of regression coefficients of the equation on the temperature  $T_x$  for the temperature program with  $\Delta T = 2^{\circ}\text{C min}^{-1}$  (for  $a_x$  cf. Fig. 2.)  $80^{\circ}\text{C}/0.5 \text{ min}/25^{\circ}\text{C min}^{-1}/T_x/2^{\circ}\text{C min}^{-1}/290^{\circ}\text{C}$ .

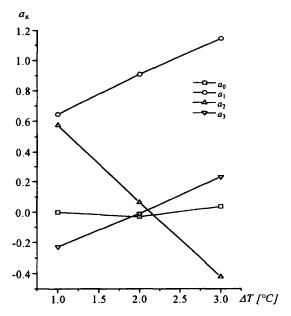



Fig. 4. Dependence of regression coefficients of the equation on temperature gradient  $\Delta T$  for  $T_s = 125^{\circ}\text{C}$  (for  $a_x$  cf. Fig. 2.) 80°C/0.5 min/25°C min<sup>-1</sup>/125°C/ $\Delta T^{\circ}\text{C}$  min<sup>-1</sup>/290°C.

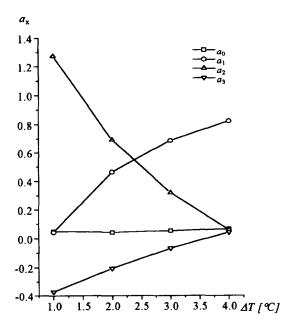



Fig. 5. Dependence of regression coefficients of the equation on temperature gradient  $\Delta T$  for  $T_s = 150^{\circ}\text{C}$  (for  $a_x$  cf. Fig. 2.) 80°C/0.5 min/25°C min<sup>-1</sup>/150°C/ $\Delta T$ °C min<sup>-1</sup>/290°C.

related to any compound in the sample. The temperature conditions were optimized in terms of the parallel validity of the linear relationship of the relative retention according to Eq. (2) and the maximum value of information content I(S) and information flow I(S)/t for analyses of Delor 104 (see Section 3.2).

The suitable temperature programs were determined by plotting the regression coefficients  $a_x$  versus the start temperature  $T_s$  (Figs. 2 and 3) and versus the temperature gradient  $\Delta T$  (Figs. 4 and 5). Fig. 2 indicates that the start temperature  $T_s = 140^{\circ}\text{C}$  is the optimum for the gradient  $\Delta T = 3^{\circ}\text{C}$  min<sup>-1</sup>, while the start temperature  $T_s = 125^{\circ}\text{C}$  is the optimum for the gradient  $\Delta T = 2^{\circ}\text{C}$  min<sup>-1</sup> (Fig. 3). Table 2 gives the regression coefficients  $a_x$  of the polynomial and  $a_x'$  of the reduced linear equation at different temperature conditions. The most suitable temperature programs are shown in bold letters in Table 1.

## 3.2. Analyses of Delor 104

The sample of Delor 104 with internal standard OCN  $(r_{12}=1)$  was analyzed under 3 selected temperature programs and polynomial and linear regression were determined (Table 2). Grubb's outlier test was applied to test the suitability of these equations for the identification of all of the PCBs. The procedure was as follows: The measured retention times  $(t_r)$  were recalculated according to the relative retention related to OCN  $(r_{12})$  and the chlorine number (Cl) was determined from the mass spectra (Table 3). A confidence interval  $(r_{12\min}, r_{12\max})$  was calculated for  $r_{12}$  and in the column PCBs (Table 3) polychlorinated biphenyls were ordered which fitted into the confidence interval. The PCBs, which also correspond to the degree of chlorination obtained from the mass spectra, are typed bold. Next, Mullin's  $r_{12}$  scale was divided into 1% compartments (Table 4) and linked with the  $r_{12}$  confidence interval of the PCB congeners in the commercial mixtures. The data in Table 4 were used to identify the probable PCBs in Table 3.

Based on the analysis of Delor 104, the three temperature programs were compared in terms of the information content I(S), Eq. (3), and the information flow I(S)/t, Eq. (4); refer to Table 2.

Table 2
PCB identification in Delor 104 on the basis of three optimal temperature programs

| $T_{\mathbf{s}}$                  | 125°C                                  | 140°C                                  | 150°C                                 |
|-----------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|
| $\Delta T$                        | 2°C min <sup>-1</sup>                  | 3°C min <sup>-1</sup>                  | 4°C min <sup>-1</sup>                 |
| Analysis time                     | 66 min                                 | 46 min                                 | 35 min                                |
| Number of peaks in chromatogram   | 88                                     | 86                                     | 86                                    |
| PCB identification polynomial eq. | $0.014 + 1.004x + 0.099x^2 + 0.076x^3$ | $0.039 + 0.867x + 0.063x^2 + 0.024x^3$ | $0.068 + 0.792x +0.134x^2 - 0.008x^3$ |
| S.D.                              | 0.00219                                | 0.00218                                | 0.00200                               |
| Identified PCBs                   | 117                                    | 115                                    | 118                                   |
| PCBs out of confidence interval   | 2                                      | 5                                      | 8                                     |
| PCB identification linear eq.     | 0.0153 + 0.9717x                       | 0.0100 + 0.9680x                       | 0.0321 + 0.9372x                      |
| S.D.                              | 0.00263                                | 0.00382                                | 0.0063                                |
| Identified PCBs                   | 118                                    | 117                                    | 117                                   |
| PCBs out of confidence interval   | 2                                      | 5                                      | 15                                    |
| I(S)                              | 8.8464                                 | 7.4138                                 | 5.8293                                |
| I(S)/t                            | 0.1246                                 | 0.1454                                 | 0.1457                                |

$$I(S) = \sum_{z} P_{i} ld P_{i} - ldE$$
 (3)

where  $P_i$  is the probability of identification of component i; in a mixture of Z compounds,  $P_i = 1/Z$  and E represents the PCBs found out of the confidence interval.

$$I(S)/t = I(S)/(t_{\text{rmax}} + t_{\text{reset}})$$
 (4)

where  $t_{\rm rmax}$  is the retention time of the last eluting PCB and  $t_{\rm reset}$  is the time required for commencing the next analysis.

# 3.3. Analyses of soil samples

The goal of our analysis was a quantitative determination of the biodegradation efficiency for individual PCBs in the soil samples. The extracts of soil samples were analyzed under the temperature program with  $T_c = 140^{\circ}\text{C}$  and  $\Delta T = 3^{\circ}\text{C}$  min<sup>-1</sup>. Differences in PCB composition of the soil sample, Delor 103 and Delor 104 can be seen from the chromatograms (Fig. 6). The soil sample PCB congeners were identified using the procedure in Section 3.2 and it was confirmed that the congeners relate completely neither to Delor 103 nor to Delor 104 (Table 5). To check the evaporation of PCBs from soil samples, three flasks with soil were contaminated with PCBs and left open in the fume cupboard under ambient conditions. The soil was extracted after 1 month on a Soxhlet apparatus and analyzed by GC-ECD. No significant evaporation was observed.

#### 4. Discussion

Suitable conditions for fast and efficient PCB separation and a linear relationship of  $r_{12}$  to the published data were obtained (Table 2). For the temperature programs beginning at  $T_s = 100^{\circ}$ C and  $T_s = 180^{\circ}$ C, no optimal gradients were found. Furthermore, the analysis would be time-consuming at the low temperature (135 min), whereas the polynomial function could not be reduced into a linear one at high  $T_s$ .

The data from Table 2 demonstrate that the greatest amount of information is obtained for the temperature program with  $T_s = 125^{\circ}\text{C}$ ,  $\Delta T = 2^{\circ}\text{C min}^{-1}$ ; however, this is the program with the lowest information flow I(S)/t. Under the program  $T_s = 140^{\circ}\text{C}$ ,  $\Delta T = 3^{\circ}\text{C min}^{-1}$ , the value of information flow I(S)/t was approximately equal to I(S)/t for the program  $T_s = 150^{\circ}\text{C}$ ,  $\Delta T = 4^{\circ}\text{C min}^{-1}$ . The information content I(S) is higher for the program  $T_s = 140^{\circ}\text{C}$ ,  $\Delta T = 3^{\circ}\text{C min}^{-1}$ ; therefore, it is assumed that this program will permit complete identification of the biodegradation products.

The programs used for analysis of Delor 104 are compared in Table 2. Identification of the last eluting PCB isomers of a particular chlorination level was very often found to be outside the confidence interval

Table 3 Example of identification procedure for Delor 104 for temperature program  $80^{\circ}\text{C}/0.5 \text{ min}/25^{\circ}\text{C min}^{-1}/140^{\circ}\text{C}/3^{\circ}\text{C min}^{-1}/290^{\circ}\text{C}$ , where  $(r_{12\text{min}}, r_{12\text{mex}})$  is the confidence interval for  $r_{12}$ ; S.D. = 0.00382 is obtained from linear regression

| tr   | Cl     | r <sub>12</sub> | $r_{12\min}$ | r <sub>12max</sub> | PCBs expected on the basis of the confidence interval <sup>a</sup>            | Probable<br>PCBs <sup>a</sup> |
|------|--------|-----------------|--------------|--------------------|-------------------------------------------------------------------------------|-------------------------------|
| 420  | 0      | 0.1265          | 0.1189       | 0.1342             |                                                                               | biphenyl                      |
| 550  | 1      | 0.1749          | 0.1673       | 0.1826             |                                                                               | 1                             |
| 663  | 1      | 0.2170          | 0.2093       | 0.2246             | 10, 4                                                                         | 3                             |
| 719  | 2      | 0.2378          | 0.2302       | 0.2455             |                                                                               | 10, 4                         |
| 796  | 2      | 0.2665          | 0.2588       | 0.2741             | 7, 9, 6                                                                       | 7, 9                          |
| 828  | 2      | 0.2784          | 0.2707       | 0.2860             | 6, 8, 5                                                                       | 6                             |
| 854  | 2      | 0.2881          | 0.2804       | 0.2957             |                                                                               | 8, 5                          |
| 908  | 3      | 0.3082          | 0.3005       | 0.3158             | 19                                                                            | 19                            |
| 997  | 3      | 0.3413          | 0.3336       | 0.3489             | <b>18</b> , 15, <b>17</b>                                                     | 18                            |
| 1003 | 3      | 0.3435          | 0.3359       | 0.3511             | <b>18</b> , 15, <b>17</b> , <b>24</b> , <b>27</b>                             | 17                            |
| 1014 | 2      | 0.3476          | 0.3400       | 0.3552             | 24, 27                                                                        | 15                            |
| 1023 | 3      | 0.3509          | 0.3433       | 0.3586             | 24, 27                                                                        | 24, 27                        |
| 1056 | 3      | 0.3632          | 0.3556       | 0.3709             | 16, 32                                                                        | 16                            |
| 1061 | 3      | 0.3651          | 0.3575       | 0.3727             | 16, 32                                                                        | 32                            |
| 1086 | 3      | 0.3744          | 0.3668       | 0.3820             | <b>23, 34</b> , 54, <b>29</b>                                                 | 34                            |
| 1100 | 4+3    | 0.3796          | 0.3720       | 0.3872             | 23, 34, 54, 29                                                                | 54, 29                        |
| 1129 | 3      | 0.3904          | 0.3828       | 0.3980             | <b>26, 25</b> , 50                                                            | 26                            |
| 1132 | 3      | 0.3915          | 0.3839       | 0.3992             | <b>26, 25</b> , 50                                                            | 25                            |
| 1174 | 3      | 0.4071          | 0.3995       | 0.4148             | 31, 28, 21, 33, 20                                                            | 31, 28                        |
| 1201 | 3      | 0.4172          | 0.4096       | 0.4248             | <b>28, 21, 33, 20</b> , 53, 51, <b>22</b>                                     | 21, 33                        |
| 1212 | 4      | 0.4213          | 0.4136       | 0.4289             | 20, <b>53, 51</b> , 22                                                        | 51                            |
| 1228 | 3      | 0.4272          | 0.4196       | 0.4349             | 51, 22, 45, 36                                                                | 22                            |
| 1236 | 4      | 0.4302          | 0.4226       | 0.4379             | 22, <b>45</b> , 36                                                            | 45                            |
| 1260 | 4      | 0.4392          | 0.4315       | 0.4468             | 36, 46, 39, 69                                                                | 46                            |
| 1297 | 4      | 0.4529          | 0.4453       | 0.4606             | 69, 73, 52, 43, 38, 49, 47, 75, 48                                            | 52, 43                        |
| 1310 | 4      | 0.4578          | 0.4501       | 0.4654             | 73, 52, 43, 38, 49, 47, 75, 48, 65, 62                                        | 49                            |
| 1318 | 4      | 0.4607          | 0.4531       | 0.4684             | 43, 38, 49, 47, 75, 48, 65, 62, 35                                            | 48, 47                        |
| 1366 | 4      | 0.4786          | 0.4710       | 0.4862             | 44, 37, 59, 42                                                                | 44                            |
| 1374 | 4      | 0.4816          | 0.4739       | 0.4892             | 44, 37, 59, 42                                                                | 42                            |
| 1389 | 3      | 0.4872          | 0.4795       | 0.4948             | <b>37</b> , 59, 42, 72, 71, 41, 64                                            | 37                            |
| 1403 | 4      | 0.4924          | 0.4847       | 0.5000             | <b>72, 71, 41, 64, 68,</b> 96                                                 | 72, 71, 41                    |
| 1412 | 4      | 0.4957          | 0.4881       | 0.5034             | <b>72, 71, 41, 64, 68</b> , 96                                                | 64                            |
| 1431 | 4      | 0.5028          | 0.4952       | 0.5104             | <b>68</b> , 96, <b>40</b> , 103, <b>57</b>                                    | 40                            |
| 1459 | 4      | 0.5132          | 0.5056       | 0.5209             | 103, 57, 100, 67, 58                                                          | 67                            |
| 1481 | 4      | 0.5214          | 0.5138       | 0.5290             | 100, 67, 58, 63, 61, 94, 74                                                   | 58, 63                        |
| 1501 | 4      | 0.5288          | 0.5212       | 0.5365             | <b>63, 61,</b> 94, <b>74, 70,</b> 76, 98, 102, 93                             | 74                            |
| 1528 | 4      | 0.5389          | 0.5313       | 0.5465             | <b>70. 76.</b> 98, 102, 93, <b>66.</b> 95, <b>80. 88.</b> 121                 | 70, 76                        |
| 1536 | 5+4    | 0.5419          | 0.5342       | 0.5495             | 98, 102, 93, 66, 95, 80, 88, 121, 91, 55                                      | 66, 95                        |
| 1547 | 5      | 0.5460          | 0.5383       | 0.5536             | 95, 80, 88, 121, 91, 55                                                       | 91                            |
| 1554 | 4      | 0.5486          | 0.5409       | 0.5562             | 88, 121, 91, <b>55</b>                                                        | 55                            |
| 1591 | 4      | 0.5623          | 0.5547       | 0.5700             | 155, <b>56, 60</b> , 92, 84, 89                                               | 56, 60                        |
| 1595 | 5      | 0.5638          | 0.5562       | 0.5715             | 155, 56, 60, <b>92, 84, 89</b>                                                | 92, 84, 89                    |
| 1600 | 5      | 0.5657          | 0.5580       | 0.5733             | 155, 56, 60, <b>92, 84, 89, 90, 101</b>                                       | 89                            |
| 1622 | 5      | 0.5739          | 0.5662       | 0.5735             | 89, 90, 101, 113, 99, 79                                                      | 90, 101                       |
| 1633 | 5      | 0.5780          | 0.5703       | 0.5856             | 90, 101, 113, 99, 79                                                          | 113, 99                       |
| 1664 | 5      | 0.5895          | 0.5705       | 0.5850             | 119, 150, 112, 109, 78, 83, 152                                               | 109, 83                       |
| 1686 | 5      | 0.5977          | 0.5901       | 0.6053             | 109, 78, 83, 152, 97, 86, 116, 125, 81, 145, 117                              | 97                            |
| 1713 | 5<br>5 | 0.3977          | 0.6001       | 0.6053             | 86, 116, 125, 81, 145, 117, 115, 87,                                          | 87, 11 <b>1</b>               |
|      |        |                 |              |                    | <b>111, 85,</b> 148                                                           |                               |
| 1724 | 5      | 0.6118          | 0.6042       | 0.6195             | <b>125, 81</b> , 145, <b>117, 115, 87, 111, 85,</b> 148, <b>120</b> , 136, 77 | 120                           |
| 1733 | 6      | 0.6152          | 0.6075       | 0.6228             | 115, 87, 111, 85, <b>148</b> , 120, <b>136</b> , 77, 110                      | 148                           |

Table 3. Continued

| t <sub>r</sub> | Cl | <i>r</i> <sub>12</sub> | $r_{12\mathrm{min}}$ | $r_{12\text{max}}$ | PCBs expected on the basis of the confidence interval <sup>a</sup>         | Probable<br>PCBs <sup>a</sup> |  |
|----------------|----|------------------------|----------------------|--------------------|----------------------------------------------------------------------------|-------------------------------|--|
| 1749           | 5  | 0.6211                 | 0.6135               | 0.6288             | 148, <b>120</b> , 136, 77, <b>110</b> , 154                                | 110                           |  |
| 1758           | 4  | 0.6245                 | 0.6168               | 0.6321             | <b>77</b> , 110, 154, 82                                                   | 77                            |  |
| 1782           | 5  | 0.6334                 | 0.6258               | 0.6411             | 154, <b>82</b> , 151                                                       | 82                            |  |
| 1791           | 6  | 0.6368                 | 0.6291               | 0.6444             | 82, 151                                                                    | 151                           |  |
| 1808           | 6  | 0.6431                 | 0.6355               | 0.6507             | <b>151, 135, 144</b> , 124, <b>147</b>                                     | 135                           |  |
| 1815           | 6  | 0.6457                 | 0.6381               | 0.6533             | <b>151, 135, 144</b> , 124, <b>147</b> , 108, 107                          | 144                           |  |
| 1841           | 6  | 0.6554                 | 0.6477               | 0.6630             | <b>147</b> , 108, 107, 123, <b>149</b> , 106, 118, <b>139</b> , <b>140</b> | 149                           |  |
| 1856           | 5  | 0.6610                 | 0.6533               | 0.6686             | <b>123</b> , 149, <b>106</b> , <b>118</b> , 139, 140, 143, 134             | 118                           |  |
| 1869           | 6  | 0.6658                 | 0.6582               | 0.6734             | 139, 140, 143, 134, 114, 142, 131                                          | 143, 134                      |  |
| 1884           | 6  | 0.6714                 | 0.6637               | 0.6790             | 143, 134, 114, 142, 131, 122, 133                                          | 131                           |  |
| 1911           | 6  | 0.6814                 | 0.6738               | 0.6891             | 131, 122, 133, 165, 188, 146, 161                                          | 146                           |  |
| 1943           | 6  | 0.6933                 | 0.6857               | 0.7010             | 184, <b>132, 153</b> , 105, <b>168</b> , 127, <b>141</b> , 179             | 132, 153                      |  |
| 1947           | 5  | 0.6948                 | 0.6872               | 0.7025             | 184, 132, 153, <b>105</b> , 168, <b>127</b>                                | 105                           |  |
| 1978           | 7  | 0.7064                 | 0.6987               | 0.7140             | 141, <b>179</b>                                                            | 179                           |  |
| 1984           | 6  | 0.7086                 | 0.7010               | 0.7162             | <b>141</b> , 179                                                           | 141                           |  |
| 2006           | 7  | 0.7168                 | 0.7091               | 0.7244             | <b>176</b> , 137                                                           | 176                           |  |
| 2010           | 6  | 0.7183                 | 0.7106               | 0.7259             | 176, <b>137</b>                                                            | 137                           |  |
| 2034           | 6  | 0.7272                 | 0.7196               | 0.7348             | 160, 163, 164, 138, 186, 158                                               | 160, 163, 164                 |  |
| 2042           | 6  | 0.7302                 | 0.7225               | 0.7378             | <b>160, 163, 164, 138</b> , 186, <b>158, 129</b> , 126                     | 138, 158                      |  |
| 2058           | 7  | 0.7361                 | 0.7285               | 0.7438             | 158, 129, 126, <b>178</b> , 166                                            | 178                           |  |
| 2094           | 7  | 0.7495                 | 0.7419               | 0.7572             | 166, <b>175, 182, 187</b> , 159, <b>183</b>                                | 182, 187                      |  |
| 2114           | 7  | 0.7570                 | 0.7493               | 0.7646             | <b>182, 187</b> , 159, <b>183</b> , 162, 128                               | 183                           |  |
| 2132           | 6  | 0.7637                 | 0.7560               | 0.7713             | 183, <b>162, 128, 167</b> , 185                                            | 128                           |  |
| 2147           | 6  | 0.7693                 | 0.7616               | 0.7769             | <b>128, 167</b> , 185                                                      | 167                           |  |
| 2151           | 8  | 0.7707                 | 0.7631               | 0.7784             | 167, <b>185</b>                                                            | 185                           |  |
| 2180           | 7  | 0.7815                 | 0.7739               | 0.7892             | 174, 181, 177                                                              | 174                           |  |
| 2198           | 7  | 0.7882                 | 0.7806               | 0.7959             | <b>174, 181, 177, 171</b> , 202, 156                                       | 177                           |  |
| 2215           | 7  | 0.7946                 | 0.7869               | 0.8022             | <b>177, 171</b> , 202, 156, <b>173</b> , 157                               | 171                           |  |
| 2228           | 6  | 0.7994                 | 0.7918               | 0.8070             | 171, 202, <b>156</b> , 173, <b>157</b> , 200, 204                          | 156                           |  |
| 2263           | 7  | 0.8124                 | 0.8048               | 0.8201             | 204, <b>192, 172</b> , 197, <b>180</b>                                     | 172                           |  |
| 2295           | 7  | 0.8243                 | 0.8167               | 0.8320             | 180, 193, 191                                                              | 180                           |  |
| 2394           | 7  | 0.8612                 | 0.8535               | 0.8688             | <b>170, 190</b> , 198                                                      | 170, 190                      |  |
| 2422           | 8  | 0.8716                 | 0.8640               | 0.8792             | 198, 201, 196, 203                                                         | 198, 201                      |  |
| 2445           | 8  | 0.8802                 | 0.8725               | 0.8878             | 196, 203                                                                   | 196, 203                      |  |
| 2551           | 8  | 0.9196                 | 0.9120               | 0.9273             | <b>195</b> , 207                                                           | 195                           |  |
| 2634           | 8  | 0.9505                 | 0.9429               | 0.9581             | 205                                                                        | 194, 205                      |  |

<sup>&</sup>lt;sup>a</sup> Systematic numbering of PCBs according IUPAC nomenclature.

(coplanar PCBs are among these analytes). Furthermore, Mullin found the PCB elution order 18, 15, 17, while we found PCB No. 15 eluting last of this group. The most probable reason for this difference is the different polarities of the stationary phases used [3–8].

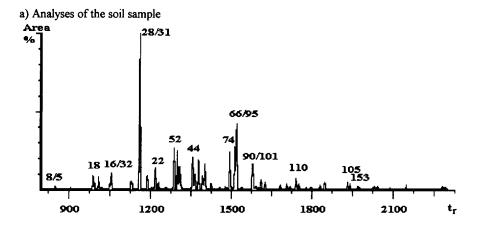
Identification of some mono- and dichlorinated PCBs under the temperature program with  $T_s = 140^{\circ}\text{C}$  and  $\Delta T = 3^{\circ}\text{C}$  and using the linear regression of  $r_{12}$ , was found to be out of the confidence interval. Because there are a few low-chlorinated PCBs, they can be identified by the mass spectra, and with the

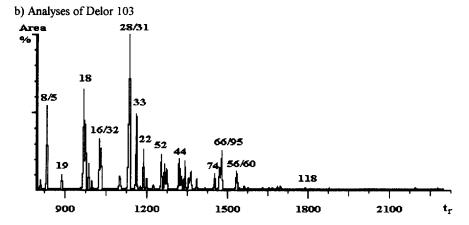
help of the data in Table 4. Although identification of PCBs is slightly worse when using the linear equation than at  $T_s = 125^{\circ}\text{C}$ ,  $\Delta T = 2^{\circ}\text{C}$ , the higher temperature shortens the analysis time and is more suitable for common laboratory practice.

When using a high start temperature, identification of mono-, octa- and nona-chlorinated congeners becomes difficult. Identification would require a polynomial regression, while the linear one would only be acceptable for analyses of a narrow range of tri- to hepta-chlorinated biphenyls.

The chromatograms in Fig. 6 and the data in Table

Table 4
PCBs divided into 1% relative retention time compartments and selection of PCBs found in commercial mixtures


| PCBs"                               | PCBs present in commercial mixtures <sup>a</sup> | PCBs"                                        | PCBs present in commercial mixtures <sup>a</sup> |  |
|-------------------------------------|--------------------------------------------------|----------------------------------------------|--------------------------------------------------|--|
| 1                                   | 1                                                | 90, 101, 113, 99, 79                         | 90, 101, 113, 99                                 |  |
| 2, 3                                | 3                                                | 119, 150, 112                                | 119                                              |  |
| 10, 4                               | 4                                                | 109, 78, 83, 152                             | 83                                               |  |
| 7, 9                                | 7, 9                                             | 97, 86, 116, 125, 81, 145, 117, 115, 87, 111 | 97, 87, 115, 111                                 |  |
| 6, 8, 5                             | 6, 8, 5                                          | 85, 148, 120, 136, 77                        | 148, 77, 136                                     |  |
| 14                                  |                                                  | 110, 154, 82, 151                            | 110, 82, 151                                     |  |
| 19                                  | 19                                               | 135, 144, 124                                | 135, 144                                         |  |
| 30                                  |                                                  | 147, 108, 107, 123, 149, 106, 118            | 107, 108, 123, 147, 118                          |  |
| 11, 12                              |                                                  | 139, 140, 143, 134                           | 143, 134                                         |  |
| 13, 18, 15, 17                      | 13, 15, 18, 17                                   | 114, 142, 131, 122, 133                      | 114, 131                                         |  |
| 24, 27                              | 24, 27                                           | 165, 188, 146, 161                           | 146                                              |  |
| 16                                  | 16                                               | 184, 132, 153, 105, 168, 127                 | 132, 153, 105                                    |  |
| 32                                  | 32                                               | 141, 179, 130                                | 141, 179, 130                                    |  |
| 23                                  |                                                  | 176, 137, 160, 163, 164                      | 176, 137, 160, 163, 164                          |  |
| 34                                  | 34                                               | 138, 186, 158                                | 163, 138, 158                                    |  |
| 54, 29                              | 29                                               | 129, 126, 178, 166                           | 126, 129, 178                                    |  |
| 26, 25                              | 26, 25                                           | 175, 182, 187, 159                           | 175, 182, 187, 159                               |  |
| 50, 31, 28                          | 31, 28                                           | 183, 162, 128                                | 183, 128, 162                                    |  |
| 21, 33, 20, 53                      | 20, 33, 53                                       | 167, 185                                     | 167, 185                                         |  |
| 51, 22                              | 51, 22                                           | 174, 181                                     | 174                                              |  |
| 45, 36                              | 45                                               | 177, 171, 202                                | 177, 171                                         |  |
| 46, 39                              | 46                                               | 156, 173, 157, 200                           | 156, 157, 200                                    |  |
| 69, 73, 52, 43, 38                  | 52, 43                                           | 204, 192, 172, 197                           | 192, 172, 197                                    |  |
| 49, 47, 75, 48, 65, 62              | 49, 48, 47                                       | 180, 193                                     | 180, 193                                         |  |
| 35, 104                             | 35                                               | 191, 199                                     | 191, 1 <b>99</b>                                 |  |
| 44, 37, 59, 42                      | 44, 37, 42                                       | 169                                          |                                                  |  |
| 72, 71, 41, 64                      | 72, 71, 41, 64                                   | 170, 190                                     | 170, 190                                         |  |
| 68, 96                              |                                                  | 198, 201                                     | 198, 201                                         |  |
| 40, 103, 57                         | 40, 103                                          | 196, 203                                     | 196, 203                                         |  |
| 100, 67, 58, 63                     | 100, 67, 63, 58                                  | 189                                          | 189                                              |  |
| 61, 94, 74                          | 94, 74                                           | 208, 195                                     | 208, 195                                         |  |
| 70, 76, 98, 102, 93, 66, 95, 80, 88 | 70, 76, 95, 66, 80                               | 207                                          | 207                                              |  |
| 121, 91, 55                         | 91, 55                                           | 194, 205                                     | 194, 205                                         |  |
| 155, 56, 60                         | 56, 90                                           | 206                                          |                                                  |  |
| 92, 84, 89                          | 92, 84, 89                                       | 209                                          |                                                  |  |


<sup>&</sup>lt;sup>a</sup> Systematic numbering of PCBs according IUPAC nomenclature.

5 indicate that soil samples provide PCB composition patterns that are different from those of commercial mixtures Delor 103 and Delor 104. Thus, the analysis performed on the basis of major components (usual in practice) does not provide information on PCB biodegradation of samples and the congenerspecific analysis is mandatory.

We assume that the samples were originally contaminated by Delor 103, as Delor 104 contains more high-chlorinated biphenyls, which are more

resistant to natural degradation then low-chlorinated ones that predominate in Delor 103. Compared to the two commercial mixtures, we conclude that di- and trichlorinated biphenyls in the soil samples were degraded, including the congeners: 10, 4, 7/9, 6, 8/5, 19, 18, 17, 15, 16, 32, 33. The possibility of the selective PCB evaporation from a liquid media was reported [14]. Our results on soil evaporation (refer to Section 3.3) as well as the results of a controlled PCB standard evaporation in the vacuum rotary





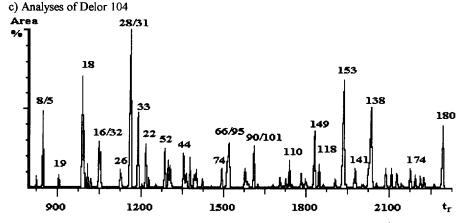



Fig. 6. Comparison of analyses on GC-MS under temperature program 80°C/0.5 min/25°C min<sup>-1</sup>/140°C/3°C min<sup>-1</sup>/290°C.

Table 5 Comparison of peak areas (%) for identified PCBs congeners

| PCBs   | Soil samples<br>Area % | Delor 103<br>Area % | Delor 104 | PCBs          | Soil samples<br>Area % | Delor 103<br>Area % | Delor 104<br>Area % |
|--------|------------------------|---------------------|-----------|---------------|------------------------|---------------------|---------------------|
|        |                        |                     | Area %    |               |                        |                     |                     |
| 1      | 0.03                   | 0.09                | 0.08      | 90, 101       | 1.29                   | 0.21                | 2.94                |
| 3      |                        | 0.03                | 0.15      | 113, 99       | 0.94                   | 0.16                | 0.53                |
| 10, 4  | 0.13                   | 2.58                | 2.92      | 109, 83       | 0.53                   |                     | 0.07                |
| 7, 9   |                        | 0.02                | 0.06      | 97            | 0.71                   | 0.12                | 0.46                |
| 6      | 0.08                   | 0.70                | 0.23      | 87, 111       | 0.46                   | 0.02                | 0.76                |
| 8, 5   | 0.39                   | 6.23                | 2.74      | 120           |                        | 0.09                | 0.31                |
| 19     | 0.17                   | 1.04                | 0.60      | 148           |                        |                     | 0.65                |
| 18     | 1.58                   | 10.76               | 2.10      | 110           | 1.44                   | 0.29                | 1.69                |
| 17     | 0.91                   | 4.49                | 0.79      | 77            | 0.89                   | 0.29                | 0.44                |
| 15     | 1.42                   | 1.77                | 0.98      | 82            | 0.29                   | 0.06                | 0.08                |
| 24, 27 | 0.31                   | 0.60                | 0.39      | 151           |                        |                     | 1.17                |
| 16     | 0.67                   | 4.36                | 2.94      | 135           |                        |                     | 0.14                |
| 32     | 0.28                   | 3.17                | 2.22      | 149           | 0.56                   | 0.06                | 3.43                |
| 34     |                        |                     | 0.02      | 118           | 1.09                   | 0.18                | 1.20                |
| 54, 29 |                        |                     | 0.04      | 143, 134      |                        |                     | 0.14                |
| 26     | 1.17                   | 1.12                | 0.54      | 131           |                        |                     | 0.08                |
| 25     | 0.92                   |                     | 0.94      | 146           |                        |                     | 0.42                |
| 31, 28 | 19.92                  | 21.74               | 7.35      | 132, 153      | 0.70                   | 0.07                | 4.19                |
| 21, 33 |                        | 7.31                | 5.68      | 105           | 0.51                   | 0.16                | 0.55                |
| 51     | 0.20                   | 0.21                | 0.30      | 179           | 0.13                   |                     | 0.30                |
| 53     | 0.23                   |                     |           | 141           |                        |                     | 0.76                |
| 22     | 2.78                   | 3.52                | 2.98      | 176           |                        |                     | 0.25                |
| 45     | 0.81                   | 0.86                | 1.02      | 160, 163, 164 | 0.44                   |                     | 0.54                |
| 46     | 0.27                   | 0.37                | 0.46      | 138, 158      |                        | 0.05                | 3.42                |
| 52, 43 | 5.36                   | 2.80                | 4.96      | 178           |                        |                     | 0.28                |
| 49     | 4.71                   | 2.31                | 3.55      | 182, 187      | 0.07                   |                     | 1.11                |
| 48, 47 | 3.45                   | 2.14                | 2.83      | 183           | 0.19                   |                     | 0.69                |
| 44     | 4.38                   | 2.39                | 4.13      | 128           |                        |                     | 0.27                |
| 42     | 2.12                   | 1.28                | 1.68      | 167           |                        |                     | 0.09                |
| 37     | 3.86                   | 2.54                | 2.19      | 185           |                        |                     | 0.11                |
| 72, 71 | 2.25                   | 1.60                | 2.23      | 174           |                        |                     | 0.83                |
| 64     | 3.54                   | 1.65                | 1.29      | 177           |                        |                     | 0.46                |
| 40     | 0.85                   | 0.75                | 0.88      | 171           |                        |                     | 0.00                |
| 67     | 0.26                   | 0.07                | 0.15      | 156           |                        |                     | 0.14                |
| 58, 63 | 0.35                   | 0.08                | 0.16      | 172           |                        |                     | 0.11                |
| 74     | 4.66                   | 1.34                | 2.56      | 180           |                        |                     | 1.21                |
| 94     | 0.15                   |                     |           | 170, 190      |                        |                     | 0.68                |
| 70, 76 | 6.26                   | 2.65                | 1.65      | 198, 201      |                        |                     | 0.24                |
| 66, 95 | 9.19                   | 3.10                | 0.78      | 196, 203      |                        |                     | 0.28                |
| 91     | 0.41                   | 0.16                | 0.06      | 195           |                        |                     | 0.07                |
| 55     | 0.10                   |                     | 0.05      | 194           |                        |                     | 1.51                |
| 56, 60 | 5.21                   | 2.22                | 2.27      |               |                        |                     |                     |
| 92, 84 | 0.32                   | 0.15                | 0.11      |               |                        |                     |                     |
| 89     | 0.05                   |                     | 0.19      |               |                        |                     |                     |

evaporator demonstrate that there is no selective PCB evaporation within one group of Cl-isomers. Thus, our finding of a selective decrease in the contents of some low chlorinated biphenyls have to be linked to biodegradation.

# Acknowledgments

The authors would like to thank Assoc. Prof. V. Pacáková of the Department of Analytical Chemistry, Charles University, Prague, and Dr. V. Šašek of

the Institute of Microbiology, Czech Academy of Sciences, for help with manuscript preparation. Dr. P. Erbanová of the Institute of Microbiology, Czech Academy of Sciences, is thanked for carrying out the extraction of the soil samples. Part of the experimental work was performed in Research Institute, Rossendorf, Germany and supported by Grant No. X244.2 provided in the framework of the Government Agreement on Scientific-Technical Cooperation between Germany and the Czech Republic. This work was supported by Grant No. 204/94/1190 of the Grant Agency of the Czech Republic and No. 620425 of the Grant Agency of the Academy of Sciences of the Czech Republic.

#### References

- [1] K.C. Jones, V. Burnett, R. Duarte-Davison and K.S. Waterhouse, Chemistry in Britain, 5 (1991) 435.
- [2] K. Ballschmiter, Ch. Rappe and H.R. Buser, in Kimbrough and Jensen (eds.), Halogenated biphenyls, terphenyls, naphthalens, dibenzodioxins and related products, Elsevier Science Publishers B.V., 1989, Ch. 2, p. 47.

- [3] B.R. Larsen, J. High Resolut. Chromatogr., 18 (1995) 141.
- [4] S. Bowadt, B. Larsen, J. High Resolut. Chromatogr., 15 (1992) 350.
- [5] B.R. Larsen, S. Bowadt and R. Titio, Int. J. Environ. Anal. Chem., 47 (1992) 47.
- [6] B.R. Larsen, S. Bowadt R. Titio and S. Facchetti, Chemosphere, 25 (1992) 1343.
- [7] S. Bowadt, H. Skejo, L. Montanarella and B.R. Larsen, Int. J. Environ. Anal. Chem., 56 (1194) 87.
- [8] B.R. Larsen, M. Cont, L. Montanarella and N. Platzner, S. Bowadt, H. Skejo, J. Chromatogr. A, 708 (1995) 115.
- [9] V. Lang, J Chromatogr., 595 (1992) 1.
- [10] M.D. Mullin, C.M. Pochini, S. McCrindle, M. Romkes, S.H. Safe and L.M. Safe, Environ. Sci. Technol., 18 (1984) 468.
- [11] G.M. Frame, 13th Progress Report, Research and Development Program for the Destruction of PCBs, General Electrical Company, Schenectedy, New York, 1994, p. 175.
- [12] J. Petrík and A. Kočan, Chem. Listy, 86 (1992) 694.
- [13] A. Pacáková-Kubátová, Diploma Thesis, Department of Analytical Chemistry, Charles University, Prague 1994.
- [14] B. Vrana, K. Dercová and Š. Baláž, Biotechnology Techniques, 9 (1995) 333.